Was ist zusammengesetzte Wahrscheinlichkeit?
Die zusammengesetzte Wahrscheinlichkeit ist ein mathematischer Begriff, der sich auf die Wahrscheinlichkeit des Auftretens zweier unabhängiger Ereignisse bezieht. Die zusammengesetzte Wahrscheinlichkeit ist gleich der Wahrscheinlichkeit des ersten Ereignisses multipliziert mit der Wahrscheinlichkeit des zweiten Ereignisses. Zusammengesetzte Wahrscheinlichkeiten werden von Versicherern zur Bewertung von Risiken und zur Zuordnung von Prämien zu verschiedenen Versicherungsprodukten verwendet.
Grundlegendes zur zusammengesetzten Wahrscheinlichkeit
Das grundlegendste Beispiel für eine zusammengesetzte Wahrscheinlichkeit ist das zweimalige Werfen einer Münze. Wenn die Wahrscheinlichkeit, Köpfe zu bekommen, 50 Prozent beträgt, ist die Wahrscheinlichkeit, zweimal hintereinander Köpfe zu bekommen, (.50 x.50) oder.25 (25 Prozent). Eine zusammengesetzte Wahrscheinlichkeit kombiniert mindestens zwei einfache Ereignisse, die auch als zusammengesetztes Ereignis bezeichnet werden. Die Wahrscheinlichkeit, dass eine Münze Köpfe zeigt, wenn Sie nur eine Münze werfen, ist ein einfaches Ereignis.
In Bezug auf Versicherungen möchten Versicherer beispielsweise wissen, ob beide Mitglieder eines Ehepaares aufgrund ihrer unabhängigen Wahrscheinlichkeiten das 75. Lebensjahr vollenden werden. Oder der Underwriter möchte wissen, wie wahrscheinlich es ist, dass zwei große Hurrikane innerhalb eines bestimmten Zeitraums eine bestimmte geografische Region treffen. Die Ergebnisse ihrer Berechnungen bestimmen, wie viel für die Versicherung von Personen oder Sachwerten berechnet wird.
Die zentralen Thesen
- Die zusammengesetzte Wahrscheinlichkeit ist das Produkt der Auftrittswahrscheinlichkeiten für zwei unabhängige Ereignisse, die als zusammengesetzte Ereignisse bezeichnet werden. Die Formel zur Berechnung der zusammengesetzten Wahrscheinlichkeiten unterscheidet sich je nach Art des zusammengesetzten Ereignisses, unabhängig davon, ob es sich gegenseitig ausschließt oder einschließt.
Zusammengesetzte Ereignisse und zusammengesetzte Wahrscheinlichkeiten
Es gibt zwei Arten von zusammengesetzten Ereignissen: sich gegenseitig ausschließende zusammengesetzte Ereignisse und sich gegenseitig einschließende zusammengesetzte Ereignisse. Ein sich gegenseitig ausschließendes zusammengesetztes Ereignis liegt vor, wenn zwei Ereignisse nicht gleichzeitig auftreten können. Wenn sich zwei Ereignisse, A und B, gegenseitig ausschließen, ist die Wahrscheinlichkeit, dass entweder A oder B eintritt, die Summe ihrer Wahrscheinlichkeiten. In der Zwischenzeit sind zusammengesetzte Ereignisse, die sich gegenseitig einschließen, Situationen, in denen ein Ereignis nicht mit dem anderen auftreten kann. Wenn zwei Ereignisse (A und B) eingeschlossen sind, ist die Wahrscheinlichkeit, dass entweder A oder B auftritt, die Summe ihrer Wahrscheinlichkeiten, wobei die Wahrscheinlichkeit des Auftretens beider Ereignisse abgezogen wird.
Zusammengesetzte Wahrscheinlichkeitsformeln
Es gibt verschiedene Formeln für die Berechnung der beiden Arten von zusammengesetzten Ereignissen: Angenommen, A und B sind zwei Ereignisse, und dann für sich gegenseitig ausschließende Ereignisse: P (A oder B) = P (A) + P (B). Für Ereignisse, die sich gegenseitig einschließen, gilt P (A oder B) = P (A) + P (B) - P (A und B).
Mit der Methode der organisierten Liste würden Sie alle möglichen Ergebnisse auflisten, die auftreten könnten. Wenn Sie zum Beispiel eine Münze werfen und einen Würfel werfen, wie hoch ist die Wahrscheinlichkeit, dass Sie Schwänze und eine gerade Zahl erhalten? Zunächst müssen wir alle möglichen Ergebnisse auflisten, die wir erzielen können. (H1 bedeutet Köpfe spiegeln und eine 1 rollen.)
H1 | T1 |
H2 | T2 |
H3 | T3 |
H4 | T4 |
H5 | T5 |
H6 | T6 |
Die andere Methode ist das Flächenmodell. Betrachten Sie zur Veranschaulichung noch einmal den Münzwurf und den Würfelwurf. Wie hoch ist die Wahrscheinlichkeit, dass Sie einen Schwanz und eine gerade Zahl bekommen?
Erstellen Sie zunächst eine Tabelle mit den Ergebnissen eines Ereignisses oben und den Ergebnissen des zweiten Ereignisses auf der Seite. Füllen Sie die Zellen der Tabelle mit den entsprechenden Ergebnissen für jedes Ereignis aus. Schattieren Sie die Zellen, die der Wahrscheinlichkeit entsprechen.
In diesem Beispiel gibt es zwölf Zellen und drei sind schattiert. Die Wahrscheinlichkeit ist also: P = 3/12 = 1/4 = 25 Prozent.
Anlagekonten vergleichen × Die in dieser Tabelle aufgeführten Angebote stammen von Partnerschaften, für die Investopedia eine Vergütung erhält. Anbietername BeschreibungVerwandte Begriffe
Informationen zur bedingten Wahrscheinlichkeit Die bedingte Wahrscheinlichkeit ist die Wahrscheinlichkeit eines Ereignisses oder Ergebnisses basierend auf dem Auftreten eines vorherigen Ereignisses oder Ergebnisses. mehr A-Priori-Wahrscheinlichkeit Eine A-Priori-Wahrscheinlichkeit ist eine Eintrittswahrscheinlichkeit, die sich durch Prüfung vorhandener Informationen logisch ableiten lässt. Weitere Informationen dazu, warum sich gegenseitig ausschließende Ereignisse nicht gleichzeitig auftreten können Gegenseitig ausschließend ist ein statistischer Begriff, der zwei oder mehr Ereignisse beschreibt, die nicht gleichzeitig auftreten können. Diese Ereignisse können auch unabhängige Ereignisse sein, die keinen Einfluss auf die Realisierbarkeit anderer Optionen haben. mehr Was uns die gemeinsame Wahrscheinlichkeit sagt Die gemeinsame Wahrscheinlichkeit ist ein statistisches Maß, das die Wahrscheinlichkeit berechnet, dass zwei Ereignisse gleichzeitig und zum gleichen Zeitpunkt auftreten. Die gemeinsame Wahrscheinlichkeit ist die Wahrscheinlichkeit, dass das Ereignis Y zum gleichen Zeitpunkt wie das Ereignis X eintritt. mehr Was bedeutet Multinomialverteilung? Die multinomiale Verteilung ist die Art der Wahrscheinlichkeitsverteilung, mit der die Ergebnisse von Experimenten mit zwei oder mehr Variablen berechnet werden. mehr T-Test Definition Ein T-Test ist eine Art Inferenzstatistik, die verwendet wird, um festzustellen, ob es einen signifikanten Unterschied zwischen den Mitteln zweier Gruppen gibt, die in bestimmten Merkmalen zusammenhängen können. mehr Partner LinksIn Verbindung stehende Artikel
Handelspsychologie
Was sind die Chancen, einen gewinnenden Trade zu erzielen?
Ruhestandsplanung
Altersvorsorge mit der Monte-Carlo-Simulation
Werkzeuge zur Fundamentalanalyse
Erfahren Sie, wie Sie eine Monte-Carlo-Simulation mit Excel erstellen
Werkzeuge zur Fundamentalanalyse
Lognormal und Normalverteilung
Finanzielle Verhältnisse
Grundlagen der Binomialverteilung
Werkzeuge zur Fundamentalanalyse