Die Leute investieren mit der Erwartung, mehr zu erhalten, als sie investiert haben. Dieser zusätzliche Betrag wird allgemein als Zins bezeichnet. Je nach Anlage kann das Interesse unterschiedlich hoch sein. Die gebräuchlichsten Wege, auf denen Zinserträge erzielt werden, sind diskrete Compounds, einschließlich einfacher und Compounds sowie kontinuierlicher Compounds.
Diskrete Compoundierung und kontinuierliche Compoundierung sind eng verwandte Begriffe. Diskret zusammengesetzte Zinsen werden in bestimmten Intervallen (z. B. jährlich, monatlich oder wöchentlich) berechnet und dem Kapital hinzugerechnet. Beim kontinuierlichen Compoundieren wird eine natürliche logarithmische Formel verwendet, um aufgelaufene Zinsen in möglichst kurzen Zeitabständen zu berechnen und zurückzurechnen.
Zinsen können in vielen verschiedenen Zeitintervallen diskret zusammengesetzt werden. Die diskrete Compoundierung definiert explizit die Anzahl und den Abstand zwischen Compoundierungsperioden. Beispielsweise ist ein Interesse, das sich am ersten Tag eines jeden Monats zusammensetzt, diskret.
Es gibt nur einen Weg, um eine kontinuierliche Compoundierung durchzuführen - kontinuierlich. Der Abstand zwischen den Verbindungsperioden ist so klein (kleiner als gerade Nanosekunden), dass er mathematisch gleich Null ist.
Selbst wenn es jede Minute oder sogar jede einzelne Sekunde auftritt, ist die Compoundierung immer noch diskret. Wenn es nicht kontinuierlich ist, ist es diskret. Zum Beispiel ist einfaches Interesse diskret.
Berechnung der diskreten Compoundierung
Wenn der Zinssatz einfach ist (es findet keine Aufzinsung statt), kann der zukünftige Wert einer Investition wie folgt geschrieben werden:
Um die Umstellung zu erleichtern, müssen Sie FV = P (1 + mr) mtwhere: FV = Zukünftiger WertP = Kapital (r / m) = Zinsrate = Zeitraum
Zinseszinsen berechnen die Zinsen auf den Kapitalbetrag und die aufgelaufenen Zinsen. Wenn die Zinsen diskret zusammengesetzt werden, lautet ihre Formel:
Um die Umstellung zu erleichtern, müssen Sie FV = P (1 + mr) mtwhere: t = Die Vertragslaufzeit (in Jahren) m = Die Anzahl der Zinsperioden pro Jahr
Berechnung der kontinuierlichen Compoundierung
Durch kontinuierliches Compoundieren wird das Konzept des natürlichen Logarithmus eingeführt. Dies ist die konstante Wachstumsrate für alle natürlich wachsenden Prozesse. Es ist eine Figur, die sich aus der Physik entwickelt hat.
Der natürliche Stamm wird typischerweise durch den Buchstaben e dargestellt. Um die fortlaufende Aufzinsung für einen Zinsvertrag zu berechnen, muss die Formel wie folgt geschrieben werden:
Um die Umstellung zu erleichtern, müssen Sie FV = Pert